Neural Network Intelligence In Medical Application Gene Prediction (Record no. 15837)

MARC details
000 -LEADER
fixed length control field 03561nam a22001817a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240409131558.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201021b xxu||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789383046850
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title ENGLISH
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.28563 PRA
100 ## - MAIN ENTRY--PERSONAL NAME
Author name Pradhan, Manaswini
245 ## - TITLE STATEMENT
Title Neural Network Intelligence In Medical Application Gene Prediction
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. New Delhi
Name of publisher, distributor, etc. DPS
Date of publication, distribution, etc. 2017
300 ## - PHYSICAL DESCRIPTION
Page 320p.
Size 22cm.
500 ## - GENERAL NOTE
General note CONTENTS<br/>Introduction<br/>Rioinformatie's<br/>Rielogical Rackground<br/>DNA<br/>Concept of Gene<br/>Computer Science and Gene<br/>Soft Computing Methods<br/>Soft Computing Techniques for Gene Prediction<br/>Soft Computing in Cancer Biology<br/>Microarray Technology<br/>Principal Component Analysis<br/>Neural Network<br/>Neural Network Architecture<br/>Objectives of the Research Work<br/>Outline of the Report<br/>LITERATURE SURVEY<br/>Introduction<br/>Review on Classification of Gene Prediction Techniques<br/>SVM Classifier for miRNA Gene Prediction<br/>SVM based Bayesian protein-protein interaction<br/>Computational method for prediction of genomes<br/>Hidden Markov Model (HMM) used in DNA sequence<br/>Web Server programs on prediction of genes<br/>Computational Methodologies<br/>Gene Prediction algorithm based on Machine Learning Techniques<br/>Gene Prediction using Digital Signal Processing<br/>Phenotypic Gene Prediction<br/>Experimental Technique for Gene Prediction<br/>ab initio model for Gene Prediction<br/>ORS<br/>Neural Network<br/>Other Gene Prediction Methodology<br/>Supplementary Research Conducted<br/>Support Vector Mochote<br/>Gene Ontology<br/>Homology<br/>Hidden Markov Model (IMM)<br/>Different Software programs for Gene Prediction<br/>Other Training Methodologies<br/>Other Machine Learning Techniques<br/>Digital Signal Processing<br/>Other techniques<br/>Conclusion<br/>ANN GENE CLASSIFIER: PPCA-EP TECHNIQUE<br/>Introduction<br/>Background Information<br/>Cancer Classification and the Challenges<br/>The Challenges<br/>Public Repository of Gene Expression Data<br/>ANN and Gene Classification<br/>Classification Technique for Microarray Gene Expression Data<br/>Dimensionality Reduction using PPCA<br/>Enhancement of Feed Forward ANNs<br/>Gene Expession Data Classification<br/>Classification of Microarray Gene Expression Data using Enhanced Classifier<br/>Training Phase: Minimization of Error by BF algorithm<br/>Testing Phase: Classification of Microarray Gem Sequence<br/>Conclusion<br/>4. DOMINANT GENE PREDICTOR: GA-ANN TECHNIQUE<br/>Introduction<br/>Genetic Algorithm<br/>Dominant gene prediction using Genetic algorithm<br/>Preprocess for dominant gene prediction<br/>Generation of Training Data<br/>Selection of Optimal Solution<br/>Dimensionality reduction by PPCA<br/>Draming phase Training through Feed Forward ANN<br/>Mromization of Eve by BP algorithm<br/>Tin Phave Geners Algorithm Based domemsant gew prediction of AML ALL<br/>Clevation of Promotomes<br/>Crecemeer and Morton<br/>Conclusion<br/>CANCER PREDICTION: ANN CLASSIFIER-DOMINANT<br/>GENE PREDICTOR<br/>Introduction<br/>Dominant Gene prediction using PPCA and GA-ANN Classifier<br/>Preprocess for dominant gene prediction<br/>Training through Feed Forward ANN<br/>Minimization of Error by BP algorithm<br/>Genetic Algorithm based dominant gene prediction of cancer diagnosis<br/>Conclusion<br/>RESULTS AND DISCUSSION<br/>Introduction<br/>Results of the proposed classification technique on ALL/AML dataset<br/>Results of the proposed gene prediction technique on ALL/AML dataset<br/>Cancer Prediction in CNS tumor, Colon tumor, Lung tumor and Diffuse Large B-Cell datasets<br/>Lymphoma<br/>Discussion and Conclusion<br/>CONCLUSION<br/>Introduction<br/>Shortcomings of Existing Methods<br/>Advantages of New Method<br/>Future Research Direction and Suggestions
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type BOOKS
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code bill no. bill date Home library Current library Date acquired Coded location qualifier Cost, normal purchase price Total Checkouts Full call number Accession No Date last seen Price effective from Koha item type Public note
    Dewey Decimal Classification   Not For Loan MAMCRC DPSPH/559/2020 23/09/2020 MAMCRC LIBRARY MAMCRC LIBRARY 21/10/2020 REF 995.00   610.28563 PRA A1375 21/10/2020 21/10/2020 BOOKS Reference Books
    Dewey Decimal Classification     MAMCRC DPSPH/549/2020 23/09/2020 MAMCRC LIBRARY MAMCRC LIBRARY 22/10/2020   995.00   610.28563 PRA A1258 22/10/2020 22/10/2020 BOOKS  
Visitor count:

Powered by Koha